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In recent years, behavioral markers such as spoken language and lexical preferences

have been studied in the early detection of mild cognitive impairment (MCI) using

conversations. While the combination of linguistic and acoustic signals have been shown

to be effective in detecting MCI, they have generally been restricted to structured

conversations in which the interviewee responds to fixed prompts. In this study, we

show that linguistic and acoustic features can be combined synergistically to identify MCI

in semi-structured conversations. Using conversational data from an on-going clinical

trial (Clinicaltrials.gov: NCT02871921), we find that the combination of linguistic and

acoustic features on semi-structured conversations achieves a mean AUC of 82.7,

significantly (p < 0.01) out-performing linguistic-only (74.9 mean AUC) or acoustic-

only (65.0 mean AUC) detections on hold-out data. Additionally, features (linguistic,

acoustic and combination) obtained from semi-structured conversations outperform their

counterparts obtained from structured weekly conversations in identifying MCI. Some

linguistic categories are significantly better at predicting MCI status (e.g., death, home)

than others.

Keywords: mild cognitive impairment (MCI), Alzheimer’s disease, behavioral intervention, audio and linguistic

markers, conversations, I-CONECT project

INTRODUCTION

Detection of dementia at an early MCI stage has been of great interest in recent years for effective
prevention of dementia as well as clinical trials enrichment. However, detecting subtle declines
associated with early MCI is difficult. Recently, there has been a growing interest in the use
of linguistic-based language and acoustic-based behavioral markers—characteristics related to
language use (1), speech (2–4), cognitive capacity (5), and lexical preferences (6) (henceforth
referred as behavioral markers in this paper)—in early detection. This is because behavioral
markers can provide easy accessibility and are generally more cost-effective (7) to obtain than
biological markers such as PET/CT scans (8, 9). Several studies (1, 6) have demonstrated the
effectiveness of linguistic markers in early detection using features extracted from short, semi-
structured conversations. In semi-structured conversations, there are no set interview questions;
instead, conversations are led by the participant themselves.
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Although linguistic markers have been shown to work
effectively in predicting MCI (1, 6, 10, 11), combining with
acoustic markers have also been shown to provide strong
predictive capacity for both AD and MCI detection. Although
the underlying biological mechanisms for the association
between acoustic features and cognition have not been well
documented, the brain controls human muscle movement.
Cognitive impairment can lead to impairments in neuromuscular
motor coordination and is likely to affect acoustic speech outputs
including pause rates and speed of speech (12). However,
most of the studies focusing on acoustic features are thus far
limited to responses to structured conversations (e.g., responses
to standardized cognitive tests and fixed questionnaires). It
is unknown whether acoustic markers can be used in semi-
structured conversations and if combining linguistic and
acoustic markers can improve the detection of MCI. Most
predictive studies using acoustic markers rely on either fixed
prompts (4, 13) or pronunciation tasks (4) to control for
the differences in linguistic contexts used in conversations.
This is because variations in utterance lengths, word choices
and sentence structures can introduce variance in acoustic
features independent of vocal differences. In fact, Roark et al.
points out that “narrow and topic-focused use of language”
is important for “more accurate” acoustic marker extraction
(4). However, while these studies suggest that acoustic markers
can have very high predictive value, the highly structured
conversational settings may restrict the effectiveness of linguistic
markers. Traditionally, semi-structured conversational settings
have been used in linguistic marker studies because they reflect
participant linguistic preferences in open conversations (without
fixed sentences). In this study, we combine lexical and acoustic
markers extracted from a semi-structured conversational setting.
To do this, we introduce a stratification method to control
for variations in word usage so that acoustic markers can
be compared despite vastly different sentence structures and
conversational lengths between participants. We hypothesize
that the combination of both features improves the ability
to distinguish MCI from those with normal cognition. We
also hypothesize that semantic features can greatly benefit
classification in the semi-structured setting.

MATERIALS AND METHODS

Clinical Trial Data
We obtained transcripts and audio recordings from an
ongoing single blind randomized controlled clinical trial
(Clinicaltrials.gov: NCT02871921) (14). Briefly, this clinical
trial [aka, Internet-Based Conversational Engagement Clinical
Trial: www.i-conect.org (I-CONECT)] aims to enhance cognitive
functions and psychological well-being of older adults aged 75
and older by means of social interactions using video chats. The
trial is funded by the National Institute of Health and developed
based on the cumulative epidemiological findings that social
isolation is a risk factor of dementia and therefore increasing
social interactions may provide a buffer against cognitive decline
among older adults (15, 16). The detail protocol and inclusion
and exclusion criteria are found elsewhere (14). The ongoing
study is an extension of a previous pilot project, conducted in

the United States of America, which found promising results in
terms of improvement in cognitive functions post-intervention
(17). In the ongoing trial, the experimental group receives almost
daily (up to 4 times per week) semi-structured conversations (30-
min video chats in English) using an internet/webcam for up to
1 year.

In total, there are 160 non-demented older adults [half with
normal cognition (NC) and half with mild cognitive impairment
(MCI)], that will be recruited. Clinical diagnoses are based
on consensus review by neurologists and neuropsychologists
using current published diagnostic research criteria (18). Each
conversation has a predefined theme (defined based on the image
cue shown to the participant), but the participant responses (e.g.,
word choice, topics of interest, etc.) are allowed to vary in order
to provide natural conversational settings. Study recruitment
started in July 2018. For the current analysis we used audio and
transcribed data from the first 39 participants enrolled in the
experimental group available as of March 2020. We used the
third day of the first week of video chats for each participant,
extracted by an analyst who is independent from the trial project
to retain blind status of the participants’ randomization to the
project statistician and assessors.

Consent and Ethical Approval
The study procedures were reviewed and approved by the
Institutional Review Board (IRB) at Oregon Health & Science
University (OHSU) IRB STUDY00015937 (14). All participants
signed the informed consent form.

Conversational Details
There were two types of conversations conducted: weekly
telephone check-ups (WC) and video chat (VC). WCs involve
a short questionnaire that is asked for each participant to
monitor their health status including incidence of falls, injury
and hospitalization as well as amount of social interactions,
and is provided to both control and experimental groups.
Most of the questions in WC are responded by yes/no or
multiple choice, but some questions are open-ended (e.g., if the
participant experienced injury, we ask to describe the nature
of the injury or accident). The check-in conversation lasts for
roughly 10–15min. On the other hand, VCs are provided only
to those in the experimental group. VCs involve face-to-face
conversations conducted remotely by webcam and are semi-
structured conversations. Each day of the week a conversational
theme is offered along with a photograph related to the theme.
The participant is asked to choose among subtopics that go
along with the theme and encouraged to explore topics of their
interests, inspired by the photograph. We use both VC and WC
recordings for the audio analysis in this study. For linguistic
analysis, we utilize a HIPAA-compliant manual transcription
service (https://www.transcribeme.com/) to align the audio and
provide transcriptions for each conversation.

For the rest of the manuscript, we will refer to WC
conversations as “structured questions with open-ended

answers” to distinguish from traditional “structured
conversations” which control for the structure of responses
in addition to interviewer questions. We will refer to VC
conversations as “semi-structured conversations.”
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Feature Representations of Two Modalities
(Linguistic Marker Extraction LIWC,
Acoustic Marker Extraction MFCC)
Linguistic Marker Extraction
Linguistic features are obtained using the 2007 English version
of Linguistic Inquiry and Word Count (LIWC) (19), which
consists of 4,487 word roots, each of which are labeled with 64
“LIWC categories” [see Table 1 in Pennebaker et al. (19)]. For
each conversation, we obtain the 64-dimensional LIWC feature
vector for each word in the conversation where each dimension
corresponds to a LIWC category (1 = if the word is a member
of a category, 0 = otherwise). We then sum over all words in
the conversation to obtain a single 64-dimensional feature vector
as the linguistic marker for the conversation. For illustrative
examples of LIWC feature vectors, we refer the reader to Figure 1
of Asgari et al. (1).

Acoustic Marker Extraction
Raw acoustic features are 1-dimensional pressure signals sensed
by the microphone during the VC recordings. We converted
the 1D signals into mel-frequency cepstral coefficients (MFCC)
(20) using the librosa library (20, 21). We used a sampling
rate of 22,050Hz, with a windowing procedure of 23ms frames
with 10ms step size. This combination results in around 506
samples per second. We used Hamming smoothing between
frames. There were 39 features associated with each sample:
for each time-series frame, there are 13 MFCC feature bands
(δ0). We take the first- (δ1) and second-order (δ2) changes in
each band to arrive at a set of 39 total features for each time
frame. We then take the minimum (min), maximum (max),
mean (avg) and standard deviations (std) of the 39 features for
each conversational turn to obtain 156 summary features per
turn. Here, we define “turn” as a single round of interviewer and
participant responses.

FIGURE 1 | Distribution of cluster centroids on LIWC question vectors (1,000

EM runs).

Finally, we take the maximum (MAX), mean (AVG), and
standard deviation (STD) across turns to arrive at a set of 468
features. Since different conversations have different lengths, we
use the following procedure to obtain a fixed 468 dimensional
acoustic marker for each conversation:

1. For each participant turn in conversation, collect the element-
wise minimum, maximum, mean, and standard deviation for
each of the 39 MFCC features across the time samples (39× 4
= 156 features per turn).

2. Calculate the element-wise maximum, mean, standard
deviation across all turns in the conversation (156 × 3 =468
features per conversation).

3. For example, suppose a participant speaks for 10 turns. For
turn 1, the participant talks for 15 s. With our downsampling
procedure, we get 7,590 (506 samples/s × 15 s) observations
for turn 1, each consisting of 39 MFCC examples. The max,
min, mean and std operators are applied across the 7,590
observations to obtain 156 features (4 × 39) summarizing the
audio information contained in turn 1. Similarly, 156 features
are obtained for all 10 turns, and max, mean, std operators
are calculated to derive a total of 468 (156 × 3) features
summarizing the entire conversation.

We note that there are turns in which the speakers (interviewer
and participant) overlap. In such cases, we took the beginning
of the turn to be the nearest second in which the participant
begins speaking.

MCI Prediction as Binary Classification
We formulate MCI prediction as a binary classification problem
(0 = NC, 1 = MCI) for which logistic regression provides an
interpretable solution with respect to the linguistic and acoustic
features of interest. To prevent overfitting and to encourage
sparsity, we use elastic net regularized logistic regression (22)
as a baseline model for all classification settings. Taking β to be
the variable coefficients, the binary classification objective of our
modeling task is formulated as follows:

minimize
β

1

N

N
∑

i = 1

d
∑

j = 1

L
(

σ
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x
(j)
i · βj

)

, yi
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Where σ is the sigmoid function:

σ (z) =
1

1 + ez

and

L
(

z, y
)

= −y log z −
(

1 − y
)

log (1 − z)

is the logistic loss.
We take α1 and α2 to be the hyperparameters of the elastic

net regularizer, with the l1-ratio α1
α1+α2

controlling the tradeoff
between l1 and l2 regularization. The rationale behind using the
elastic net is that we have a large number of summary acoustic
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features, many of which may have correlations. Sparsity in the
coefficients allows for implicit feature selection among these
variables and lends itself to improved interpretability. However,
since the l1 solution is not unique, the added l2 regularization
improves the stability of features selected from different runs
of the algorithm. Implementation of the elastic net algorithm is
done using the Scikit-Learn library (23).

Ensemble Model
We define ensemble features as follows: 1) first, separate elastic
net classifiers are trained for each modality, one using LIWC
only and one using MFCC only; 2) next, combination features
are compiled, combining both LIWC and MFCC features into a
532-dimensional vector; 3) the logits (un-normalized outputs) of
the LIWC andMFCC classifiers are concatenated with the combo
features to produce a set of meta-features; 4) a meta-classifier is
trained using the meta-features.

Interpretation of Coefficients
We define overlap as follows: let B = (β1, . . . , β100) denote the
sequence of coefficients for a particular feature β over 100 train-
test splits. For each βi, define the closed interval Ii = [0,βi] if
βi ≥ 0 and Ii = [βi, 0] if βi < 0. Let = (I1, . . . , I100) denote
the sequence of closed intervals corresponding to the coefficient
over the 100 train-test runs. Define

I∗ =

100
⋂

i = 1

Ii

as the overlap between the coefficient interval sequence I.
We define feature contributions as follows:

Importance (βi) =
|βi|

∑

j

∣

∣βj
∣

∣

, (2)

where
∣

∣βj

∣

∣ is the average magnitude of feature coefficient j.

Subtopic Stratification
Train-test distribution mismatch can lead to poor classification
performance. In a typical classification problem, train-test
mismatch is often a result of class imbalance. For our problem,
however, we have rather balanced MCI/normal cognition (NC)
sample ratios. Instead, we have vastly different conversational
topics that are covered by conversations. A classifier exposed to
different topics during training than in testing can exhibit poor
generalization due to train-test mismatch rather than algorithmic
reasons. Furthermore, we find that acoustic features obtained
on different conversational topics are vastly different, even for
the same participant. This is consistent with the idea that there
is a tradeoff between variation in language and the fidelity of
acoustic markers obtained during automatic extraction (4). Thus,
we aim to stratify train-test splits such that both MCI and NC
conversations have similar topic distributions during training
and testing.

For example, Figure 1 visualizes the k-means cluster
centroids of Linguistic Inquiry and Word Count (LIWC) (19)

question vectors obtained from 1,000 runs of the expectation-
maximization (EM) algorithm. Since the EM algorithm produces
nonunique solutions, repeated runs of the algorithm allow
for visualization of the distribution of cluster means. Here,
we see that the cluster centroids are distributed tightly across
different EM runs, suggesting heterogeneity in the questions
(i.e., topics and directions) brought on by the interviewer during
various conversations.

In order to resolve this heterogeneity, we propose the
following algorithm to stratify participants based on themes and
subtopics of the conversation. For each participant, there is a
central theme of the conversation which is introduced by the
interviewer (seeMethod section for clinical trial description). For
example, on the third day of the first week of interventions (see
Clinical Trial Data section for detail), the conversational theme
is set to “summertime,” and the participants are encouraged to
discuss topics related to the summer. By contrast, the second
day of the week involves a different theme (sports), leading to
a vastly different set of topics of discussion among participants.
We thus propose to build a different classifier for different
themes. In this study, we constrain the theme of the discussion
to “summertime”—a theme that is used for all participants.

We then stratify our train-test split by balanced sampling
from these subtopic clusters (Figure 1) to minimize imbalance
among the conversational topics between train-test distributions.
We consider this stratification at the level of “subtopic” since
we already account for the theme differences by considering
the “summertime” theme. Our subtopic-stratified shuffle split is
performed as follows: 1) for K splits, obtain train-test splits using
subtopic stratification; 2) for each split, perform hyperparameter
tuning using cross validation (CV) on the training set; 3) after
hyperparameter tuning, train on the entire training set for
the current split using CV hyperparameters; 4) after training,
evaluate on test set, record area under the receiver operating
curve (AUC Score) and F1 scores for the current split. In total,
we consider K = 100 stratified shuffle splits using a 80% training
and 20% testing ratio, as commonly done in predictive modeling
studies (24). We compare the AUC scores by each feature
modality (linguistic only, acoustic only, combined features, and
ensemble). Since linguistic markers have been shown to be
effective in differentiating cognitive status in semi-structured
conversations, we use them as baselines for comparison.

RESULTS

Participants Characteristics
Demographic characteristics of the participants are summarized
in Table 1 below.

Model Comparison
Using the subtopic stratification scheme, we compare the
performance of several modalities in Table 2. The linguistic
feature setting refers to the elastic net classifier using only
Linguistic Inquiry and Word Count (LIWC) features for both
training and testing. The acoustic feature setting uses only mel-
frequency cepstral coefficients (MFCC) features (see Feature
Representation of Two Modalities in Materials and Methods).
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TABLE 1 | Demographic characteristics by baseline cognitive status.

Variable MCI group (n = 15) NC group (n = 17) p-value

Age 79.3 (3.7) 80.0 (4.3) 0.72

Gender (% Women) 53.3% 82.4% 0.08

Years of Education 14.8 (2.8) 15.8 (3.0) 0.36

Race (% White) 86.7% 94.1% 0.49

MoCA Score (25) 21.3 (2.9) 25.7 (2.5) 0.00018

MCI, mild cognitive impairment; NC, those with normal cognition. Two-sample student t-

tests for continuous variables and Pearson chi-squared test for categorical variables were

used to calculate p-values.

TABLE 2 | Comparisons of behavioral marker performances on 100

subtopic-stratified shuffle splits using semi-structured conversations.

Feature AUC Score t-statistic p-value

Linguistic 74.9 (3.27) - -

Acoustic 64.9 (4.66) −3.52 5.37e-4

Combo 79.9 (4.37) 1.78 0.077

Ensemble 82.7 (3.53) 2.97 0.003

Features are obtained from video chats (semi-structured conversations). Variance across

different splits is reported in parenthesis. Bolded: the best performing model by AUC

Score.

Combo features refer to the simple concatenation of LIWC and
MFCC features, resulting in a 532-dimensional representation
of each participant conversation (64 dimensions for linguistic+
468 dimensions for acoustic). For each feature representation,
elementwise standardization is fitted to the training set and
applied as a preprocessing step before classification.

Only the performances on the test sets are reported since
training performance does not measure generalization capacity.
The mean test AUC scores are reported, with the variance
across different train-test splits reported in parenthesis inTable 2.
We report the two-sample t-test results, comparing various
feature modalities against the linguistic-only baseline. In total, we
consider K=100 different stratified train-test splits.

In Table 2, we consider linguistic marker performance to be
the baseline for comparison. Using acoustic markers alone, we
see a notable decrease in performance. This is because unlike
previous papers such as Roark et al. (4) and Alhanai et al. (13),
the semi-structured nature of our conversations introduces many
sources of noise not encountered in structured conversational
settings. For example, VC (video chat) conversations last
anywhere from 9 to 25min in terms of total participant
speaking time. This means that the same sampling and statistical
averaging techniques may in fact result in different levels of
feature granularity across patients. Additionally, the phonetic
information provided by conversations largely depends on
the spoken words used to generate them; semi-structured
conversations result in a much larger variance in terms of word
coverage as well as the pace of conversation that is not observed
in structured conversations. The result of these complications
can be observed in acoustic marker performance: using MFCCs

alone results in larger variance across splits and lower overall
prediction power.

However, combining the linguistic and acoustic markers
result in a notable performance boost compared to using
either linguistic or acoustic markers alone. Although combo
features provided statistically significant improvement compared
to acoustic features, they outperform linguistic features only
marginally. For this reason, we introduce the ensemble setting
to reduce the variance of our predictions, which in turn
produces over 80% AUC with statistically significant (p < 0.01)
improvement compared to the linguistic marker baseline.

LIWC Markers: Stability of Linguistic
Feature Selections
In this section, we quantify the feature contributions of
various linguistic markers for MCI prediction and provide an
interpretation of their potential associations with the diagnosis.
Figure 2 summarizes the feature coefficient changes across the
train-test splits. Coefficients for each individual split are plotted
as purple bars. For each feature, the coefficient overlap (defined
in methods section) is visualized in yellow. From Figure 2, we
see that the majority of the coefficient weights overlap across
various train-test splits, despite degrees of train-test distribution
mismatch between splits. This observation indicates the stability
of linguistic features selected by L1.

In total, there are 22 features that positively correlate
with MCI and 42 features that negatively correlate with MCI
(NC correlated). We list the top 10 ranking features (in
terms of coefficient weights) of each set in Table 3 below.
The listed features correspond to LIWC categories whose
semantic meanings are outlined in Table 1 of Pennebaker et al.
(19). Among the MCI correlated features, the LIWC category
“death”—i.e., words related to one’s personal concerns of death—
possesses the highest odds ratio (67% increase in odd per unit of
increase). In parenthesis, we report the 95% confidence interval
(CI) for the odds ratio column. Here, each “unit” of increase
for any LIWC feature is one standard deviation change in the
LIWC categorical count. For example, adding a single word
“kill” to a person’s dialog responses will not change the person’s
“death” LIWC category feature, but adding multiple responses
involving one’s preoccupation with death (e.g., deterioration,
funeral) can potentially lead to a unit increase if words belonging
to the “death” LIWC category is overrepresented by an additional
standard deviation compared to the rest of the conversations
in the training set. As a baseline, an odds ratio of 1.0 neither
increases nor decreases the odds of an MCI prediction.

Interestingly, we find that MCI and NC patients differ greatly
in the “personal concerns” meta-category, consisting of work,
leisure, home, money, relig[ion], and death [more details in Table
1 of Pennebaker et al. (19)]. Specifically, the categories leisure
and money decrease the odds of being MCI by 30%+ whereas
death and home increases the odds by 40%+. We also find
that unit increases in categories related to “social processes”
(another meta-category) such as ingest (food, drinks), friend,
we, and social increase the odds of being MCI by at least 27%.
On the other hand, unit increases in “informal language” use
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FIGURE 2 | Feature coefficients β across various train-test splits. Colors: yellow = overlapping feature weights, purple = non overlapping feature weights.

TABLE 3 | Top 10 LIWC feature coefficients correlated with MCI compared with top 10 coefficients correlated with NC.

Features associated with MCI Coeff. Odds Ratio Features associated with NC Coeff. Odds ratio

Death 0.50 1.67 (1.6–1.7) Swear −0.74 0.48 (0.4–0.5)

They 0.49 1.67 (1.6–1.7) Feel −0.61 0.55 (0.5–0.6)

Home 0.38 1.48 (1.4–1.5) Percept −0.56 0.58 (0.5–0.6)

Ingest 0.38 1.47 (1.4–1.5) Nonfl −0.54 0.59 (0.5–0.6)

Number 0.32 1.40 (1.4–1.4) Insight −0.53 0.59 (0.5–0.6)

Friend 0.30 1.37 (1.3–1.4) Leisure −0.49 0.62 (0.6–0.6)

You 0.24 1.28 (1.2–1.3) Assent −0.46 0.64 (0.6–0.6)

Social 0.24 1.27 (1.2–1.3) Anger −0.44 0.65 (0.6–0.7)

We 0.21 1.25 (1.2–1.3) Money −0.39 0.68 (0.6–0.8)

Bio 0.20 1.22 (1.2–1.2) Time −0.31 0.73 (0.7–0.8)

Ninety five percent confidence interval is given for odds ratio.

(another meta-category) such as swear (words), nonfl[uent] (e.g.,
laughter) decrease the odds by 40%+. A full list of features, their
coefficients and odd ratios are listed in Supplementary Table 1.

MFCC Markers
In contrast to LIWC markers, acoustic markers show more
fluctuation in coefficient weights across various splits. Figure 3
illustrates the importance of various MFCC weight coefficients
used by the classifier to predict MCI. It is notable that the sparsity
pattern is quite different; the large number of features leads to
an overdetermined system with correlated features. As a result,
L1 regularization selects for only a small subset of contributory
features (i.e., coefficients with non-zero weights). Because L1
paths are non-unique, the use of elastic-net regularization
stabilizes the sparsity patterns across different train-test splits, as
evidenced by the tighter confidence intervals around the odds
ratio estimates for each feature. In total, there are 400 non-
zero coefficients (averaged across the splits) that significantly
contributed to MCI predictions (1.0 not included in confidence

interval). However, Figure 3 shows that the weight of their
contributions drop off exponentially, with the top 100 features
accounting for most of the contributions.

In Figure 3, we find that the feature importances (defined
in Methods section) drop below 0.5% after the top 100 ranking
features. Thus, we report the top 5 features in terms of feature
importance in Table 3.

The MFCC feature coefficients can be interpreted as follows:
the MFCC bands increase in frequency e.g., δ0-3 represents
a lower frequency than δ0-4. The first 2 bands, δ0-1 and
δ0-2 represent the total energies of the speech sample (i.e.,
do not correspond to specific frequencies). Since δ1 features
represent instantaneous changes in the original feature, δ1-x
would correspond to the change in frequency x during the speech
sample. When averaged across speech samples, avg-δ0-x, avg-
δ1-x and avg-??2-x represent the average amplitude, change in
amplitude, and rate of change in amplitude of the frequency x,
respectively, for a spoken turn consisting of a set of speech
samples. For a participant, MAX-avg-δ0-x would represent the
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FIGURE 3 | Feature importance rankings for MFCC coefficient weights. Elastic net was used to stabilize the L1 path across different train-test splits.

TABLE 4 | Top five MFCC feature coefficients associated with MCI compared to the top five feature coefficients associated with NC.

Features associated with MCI Coeff. Odds Ratio Features associated with NC Coeff. Odds Ratio

AVG, min, δ0-8 0.15 1.16 (1.16–1.17) MAX, min, δ1-13 −0.15 0.86 (0.86–0.87)

AVG, max, δ0-8 0.14 1.15 (1.15 - 1.15) MAX, min, δ0-7 −0.15 0.86 (0.86–0.87)

AVG, std, δ0-1 0.13 1.14 (1.13 - 1.14) MAX, min, δ1-11 −0.15 0.86 (0.86–0.87)

MAX, std, δ0-12 0.12 1.13 (1.13 - 1.14) STD, min, δ2-8 −0.15 0.86 (0.86–0.87)

STD, max, δ0-2 0.12 1.13 (1.12 - 1.13) MAX, avg, δ1-10 −0.14 0.87 (0.86–0.87)

Ninety five percent confidence interval is given for the odds ratio.

maximum over the value averages of the frequency x across all
spoken turns in the conversation. As an example, consider the
feature MAX-min-δ1-6. This feature gives the empirical upper
bound (MAX) on the minimum (min) rate of change (δ1) in
frequency band number 6. On the other hand, AVG-min-δ1-
6 gives the empirical average of the lowest rate of change in
frequency band 6. Using these features, we can give fine-grained
interpretation over how the MFCC features change across turns
across different participants over the course of conversations.

In Table 4, we find that the average minimum and maximum
amplitudes of frequency band 8 has the highest statistically
significant odds ratio. This can be interpretated as follows: for
each unit increase (again, in terms of standard deviation) in the
minimum or maximum amplitude of frequency band 8 leads
to a 16% increase in the odds of a positive MCI prediction.
On the other hand, we find that the lower bound (MAX-
min) on the change (δ1) and rates of change (δ2) in multiple
frequency bands significantly decrease the odds of a positive
MCI prediction. The statistical significance of lower bounds
(across turns) of frequency band changes may be interpreted
as follows: the min part of MAX-min corresponds to the
minimum of speech changes within turns. Maximizing across
turns gives a lower bound (a greatest lower bound) on how
much a frequency band changes over the entire conversation.
For example, a unit increase in MAX-min-δ1-13 from 0.0 to 1.0
would mean that the frequency band 13 fluctuates at a rate at
least 1 standard deviation above the training set mean in any 1

of the participant’s responses. The fact that MAX-min-δ1-13 has
an odds ratio of 0.86 suggests that a unit increase in the lower
bound decreases the odds of a positive MCI prediction by 14%.
Since frequency band 13 has the highest frequency on the MFCC
spectrum, this finding suggests that an increase in the variability
(δ1) of the highest speech frequency lowers the odds of MCI
prediction. Supplementary Table 2 gives the full MFCC features
list, coefficient weights and odds ratio (with CI bounds).

Comparison With Structured
Conversations
Finally we compare the performance of features obtained from
structured conversations in Table 5. Here, both text transcripts
and audio signals are obtained from Weekly Check-in (WC)
conversations (i.e., structured conversations). Similar to semi-
structured VCs, we use a single conversation from Week 1
for each participant for analysis. The same set of participants
are used for WC analysis as those used for VC analysis. A
comparison of Tables 2, 5 reveals that the AUC for each feature
setting performed significantly decreased in the structured
setting compared to the semi-structured setting. We compare
with the VC linguistic feature performance as baseline for
hypothesis testing.

One possible explanation for this drop in performance is
that almost all of the advantages of linguistic features are lost
in structured conversation. We can see that including linguistic
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TABLE 5 | Comparisons of behavioral marker performances on 100

subtopic-stratified shuffle splits using structured conversations.

Feature AUC Score t-statistic p-value

Linguistic 56.8 (6.3) −7.30 7.37e-12

Acoustic 55.8 (6.3) −6.58 4.2e-10

Combo 49.5 (4.4) −10.08 1.7e-19

Ensemble 56.0 (7.2) −6.24 2.64e-9

Features obtained from Weekly Check-ins (structured conversations). Variance across

different splits is reported in parenthesis.

predictions as input to the ensemble model did not increase
the performance at all. In fact, we find that the inclusion of
linguistic features into the combo model led to overfitting and
consequently drop in performance. It is interesting to note that
the classifiers exclusively using acoustic features also decreased
in performance. Although the prompts used by the interviewers
during WCs are fixed, the answers given by the participants may
differ (although not nearly as much as VC responses), e.g., “I am
doing fine” vs. “I am not well” in response to “how do you feel
this morning?”

DISCUSSION

In this study, we examine the use of linguistic and acoustic
features for MCI classification in semi-structured conversations.
The topics of discussion, duration and pace of speech in
structured conversations do not vary as much as they do in
unstructured conversations since structured conversation are
responses to the same set of questions. As a result, semi-
structured conversations introduce challenges in the stability of
behavioral markers, especially for ones dependent on acoustic
signals. By combining both acoustic and linguistic markers, we
show that the composite behavioral markers can significantly
out-perform any single modality alone. Using the elastic net,
we show that the feature coefficients reveal some interesting
differences in lexical preference and speech patterns between
MCI and NC groups.

In semi-structured conversations, we see the benefit of
using linguistic features that capture semantic meanings of
responses (LIWC). In VC conversations, the LIWC, which
addresses linguistic features, significantly outperform the MFCC,
which addresses acoustic features (AUC 0.75 vs. 0.65). By
contrast, when structured questions are used in the WC setting,
linguistic features lose their advantages, and we do not see
a synergistic effect between the two modalities in either the
combo or the ensemble models. The key difference between
the VC and WC setting is that the participants were allowed
to guide the conversation instead of the interviewer in the
VC. That is, the differences in the linguistic markers were a
result of the degree of freedom in the conversation content and
topic selection. This finding seems to support our hypothesis
that semantic features can greatly benefit classification in the
semi-structured setting.

Compared with other research groups which analyzed
structured conversations using acoustic features, such as

Roark et al. (which found AUC between 0.63 and 0.73),
and Frasier et al. (AUC 0.88 for combined modalities), our
performance in structured conversation using linguistic features
in differentiating MCI from those with normal cognition was
lower (AUC of 0.56–0.57). This suggests that linguistic features
that rely heavily on semantic meanings do not perform well for
analyzing structured conversations. Additionally, Frazier et al.
also included eye tracking features which could have contributed
to the higher AUC in detecting MCI.

Additionally, in previous structured studies, the acoustic
features that perform well are extracted from different speakers
saying the exact same sentences or describing the same visual
prompts. WC conversations in our study used open-ended
questions, so the answers may still vary between participants,
although not nearly as much as in semi-structured conversations
where they drive the conversation. For example, one question
is “did you visit the hospital last week”—a yes or no question,
but the follow up question asks the reason of the visit which
may lead to very different responses. That is, our structured
conversations may not be as structured as exact sentences spoken
or fixed visual inputs. Thus, while there is a performance drop
to acoustic-only classifiers (0.65–0.55), the difference is not as
much as the performance drop in the linguistic (0.75–0.56) and
ensemble (0.83–0.57) ones.

In this study, we used two unique approaches to improve
the ability to detect MCI when semi-structured conversations
are analyzed. First, although semi-structured conversations had
more variations in conversational content, we were able to
compare across a diverse set of conversational structures using
sub-topic stratification to minimize the distribution mismatch
between train-test splits. An example of train-test mismatch is
when the conversational topics in the training set are drastically
different from the test set. For example, if no training set
conversations involved any discussion of leisure activities, then
it is likely that the leisure LIWC category would not contribute
as much to the classification decision. In other words, sub-topic
stratification ensures that the distribution of over the feature
space (approximated by the distribution over LIWC features) is
similar for training and test set samples.

Second, we improved the predictive performance of combined
acoustic and linguistic features through the use of ensemble.
While we showed in Table 2 that combined features alone can
significantly improve the classification performance compared
to either linguistic and acoustic features alone, ensemble can
even further improve the performance by directly combining
the linguistic and acoustic features (combo model). This is
largely because of the effect of ensemble on variance; by
combining the outputs of multiple models, the variance can
decrease when compared to the individual variances of each
model in the ensemble (22, 26). Interestingly, model ensemble
does not only apply to generalized linear models such as
logistic regression but also to decision tree methods, which
can be closer to the typical representation in clinical decision
algorithms. In this study, we chose logistic regression as the
classifier for each of the modalities because its feature coefficients
permit useful odds-ratio interpretations of the features involved.
In future work, it may be interesting to combine logistic
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regression outputs of the different modalities with tree-based
classifiers (e.g., random forests) that uses these classifier decisions
as meta-features.

As for the differences in lexical preference and speech patterns
between MCI and NC groups, we revealed an interesting finding.
For example, an analysis of the odds ratios of LIWC features
suggests that the LIWC meta-category “personal concerns”
distinguish between topics that are preferred byMCI participants
(topics related to health concerns related to home, deterioration
and death) from those preferred by NC (topics related to
leisure and money). The fact that different LIWC categories
have different predictive value suggests that interviewer questions,
prioritizing different topics of discussion, can potentially drive
conversations with vastly different prediction outcomes. For
example, interview questions that lead participants to divulge
their personal concerns can potentially be more informative
LIWC feature vectors compared to interview questions that focus
on occupation (work category, OR = 1.09) or past achievements
(achieve category, OR= 0.99).

One limitation of our approach is that the degree of train-
test distribution mismatch is highly dependent on the range
of conversational topics covered in the set of conversations.
For this study, we constrained the theme to be “summertime”
and dealt with subtopic imbalance by stratified sampling.
However, in a real-world setting, unstructured conversations
can span much larger sets of topics and dialog structures. By
conditioning on select topics and by instilling certain interview
structures, we likely cannot generalize to the unstructured
setting. However, we illustrate that interpretable insights
can be obtained by imposing some dialog structure but
allowing the participants to explore the linguistic space without
strong constraints.

Another limitation of this study is the use of manual
transcriptions for speech-to-text translation. We used
manually transcribed conversational data, which is time-
consuming and costly. However, our refined ASR is already
available (27), and we plan to apply the ASR to our entire
speech sample and replicate the current analyses as a
validation study.

Future studies can build upon our findings by comparing
differences in language behavioral markers under other dialog
structures and themes. It is possible that we may not need to
construct a single classifier that generalizes to the unstructured
setting since the space of possible topics and dialog structures is
simply intractable to estimate. Instead, we show that it may be
possible to build many classifiers under various semi-structured
settings that can be combined synergistically under different
conversational settings.

One of the potential benefits of accurate diagnostic predictions
in the semi-structured settings is its practical use in the greater
community (outside of clinical settings). For example, MCI
diagnosis is currently done at outpatient clinics, using extensive
neuropsychology testing. Early diagnostic screening using semi-
structured conversations can potentially be carried out even

before scheduled outpatient visits or used to monitor daily
changes longitudinally.

This study is among the first to examine semi-structured
conversations (as opposed to structured conversations) and
to extract both acoustic and linguistic features associated
with MCI diagnosis. The results are still preliminary because
the sample size is small, and the generalizability is limited.
However, in the future, our approach may directly assist in
development of a useful app where conversations can be analyzed
longitudinally and identify those at high risk of cognitive decline
associated with dementia. This type of identification approach
of early-stage dementia which does not require clinical visits
or expensive biomarkers analyses can be of significant public
health importance.
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