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Abstract

Unsupervised Domain Adaptation (UDA) provides a promising solution for learning without 

supervision, which transfers knowledge from relevant source domains with accessible labeled 

training data. Existing UDA solutions hinge on clean training data with a short-tail distribution 

from the source domain, which can be fragile when the source domain data is corrupted either 

inherently or via adversarial attacks. In this work, we propose an effective framework to address 

the challenges of UDA from corrupted source domains in a principled manner. Specifically, 

we perform knowledge ensemble from multiple domain-invariant models that are learned on 

random partitions of training data. To further address the distribution shift from the source to 

the target domain, we refine each of the learned models via mutual information maximization, 

which adaptively obtains the predictive information of the target domain with high confidence. 

Extensive empirical studies demonstrate that the proposed approach is robust against various types 

of poisoned data attacks while achieving high asymptotic performance on the target domain.
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I. INTRODUCTION

Deep learning techniques have been thriving over the last decade as a powerful tool for 

predictive modeling in a variety of domains, including computer vision [1], autonomous 

vehicles [2], and healthcare [3], to name just a few. The over-parameterization design 

of deep models gives them ultrahigh model flexibility, which gives them the power to 

capture complex mappings between input data points and target labels. The success of 

deep learning-based predictive modeling, however, hinges on massive training data with 

accurate labels, which hinders its application to tasks with limited training label supervision, 

where collecting accurate labels can be economically prohibitive. Longitudinal studies, strict 

enrollment conditions, data coding errors, and high costs associated with the data collection 

often result in only very small datasets being available for supervised learning [4].

Domain adaptation (DA) has emerged as an effective solution, which transfers knowledge 

learned from a related but different domain (i.e. the source domain) to assist the learning 
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of the target domain. In particular, a challenging and practical problem along this line is 

unsupervised domain adaptation (UDA), in which the target domain has access to only 

a few unlabeled training samples. While UDA has been extensively studied for typical 

machine learning settings, most existing UDA methods are usually built upon an implicit 

assumption that source domain data is clean. Under this assumption, UDA methods are 

prone to performance degradation when the source domain samples are corrupted, either 

unintentionally during data collection or deliberately by vicious attackers. Consequently, 

models learned on the corrupted source data can be easily under attack even on the 

source domain, not to mention confronting the challenges of domain distribution shift when 

adapting to the target domain. Such model performance degradation can be exacerbated 

under adversarial attacks. For instance, as illustrated in Figure 1, a minimal corruption in 

source domain samples shifts the model’s hypothesis plane drastically when performing 

domain adaptation, especially due to the lack of labeled supervision in the target domain.

Given the challenge of UDA under the corrupted source domain, in this work, we propose a 

simple yet effective solution for robust UDA that addresses various types of data corruption. 

Specifically, inspired by the principle of Median of Means (MoM) estimators [5], we 

alleviate the impacts of corrupted training samples by ensemble learning on a group of 

lightweight models with domain-invariant features, which is shown to be effective in 

confronting poisoned data. To further address the distribution shift inherent in domain 

adaptation, we refine the learned models by maximizing the mutual information between the 

latent feature representations and the posterior distributions. Eventually, the final ensemble 

model can attain the predictive knowledge of the target domain with high confidence.

The merits of our proposed approach are multi-fold: i) It is a principled and effective 

solution in defending contaminated training samples. ii) The proposed solution to UDA 

is generally robust against agnostic types of data corruption. In particular, our approach 

can successfully tackle notorious backdoor attacks, where both the training samples and 

corresponding labels may be maliciously modified by attackers. iii) The proposed learning 

framework can be flexibly combined with existing UDA approaches that are orthogonal to 

our work to improve their robustness under corrupted data.

II RELATED WORK

Domain Adaptation (DA) has been applied to a number of practical applications, including 

semantic segmentation [6], objective detection [7], etc. In this work, we work on the 

problem setting of unsupervised domain adaptation (UDA), which is more challenging 

than semi-supervised domain adaptation [8] where a few labeled samples of the target 

domain are available to assist learning. Among various UDA approaches, domain invariant 
representations reside at their core. A plethora of work has been proposed to learn feature 

representations that are discriminative for prediction while being invariant among domains. 

Earlier work leveraged the idea of minimizing the Maximum Mean Discrepancy (MMD) 

to achieve feature invariance [9]. Adversarial training approaches emerged to minimize 

the discrepancy of the latent feature distributions between different domains [10]. Moment 

matching was also widely utilized for learning latent representations [11], which can be 

combined with generative adversarial learning for improving such domain-invariance [12]. 
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Another direction towards solving UDA is based on data reconstruction [13]. Most existing 

approaches did not tackle the issue of source domain corruption.

Learning with noisy data has been extensively studied in traditional, non-domain 

adaptation settings. Numerous robust learning methods have been proposed for tackling 

feature corruption, label corruption, and data poisoning attacks [14], [15]. However, the 

problem of learning with noisy data for DA is not well studied. Most of the existing robust 

DA methods are limited to one or two particular types of noise in data. [16] addressed 

domain adaptation under missing classes by performing a unilateral alignment. [17], [18] 

solves DA in a scenario where only the labels are noisy, with input features untouched. 

[19] proposed a marginalized Stacked denoising autoencoders (mSDA) to address feature 

corruption for DA. [20] developed an offline curriculum learning approach to tackle the 

label noise of DA, and adopted a proxy distribution based margin discrepancy to alleviate 

feature noise.

Median of Means (MoM) Estimators [5] are robust estimators utilizing the median of the 

predictions. [21] showed that MoM has a theoretical advantage over classical ERM-based 

approaches given long-tailed data with outliers, which can be very effective for solving 

general noisy data problems. [22], [23] applied MoM for robust predictive learning. In this 

paper, we leverage MoM to solve UDA with data corruption.

III PROBLEM SETTING

Unsupervised Domain Adaptation (UDA) addresses learning in a target domain without 

any label supervision via leveraging knowledge obtained from a source domain. Denote 

Ps
xy: = Ps X × Ps Y  as the distribution of the source domain, and Pt

xy = Pt X × Pt Y  as 

the distribution of the target domain, respectively. One can access labeled samples from the 

source domain, denoted as Ds: = xs
i, ys

i
i = 1

Ns ⊂ Ps
xy. Accordingly, let Dt: = xt

j
j = 1
Nt ⊂ Pt X  be 

the set of unlabeled samples accessible in the target domain, Denote the loss function for 

the target domain as L: △Y × Y ℝ+, where △Y is the simplex over the label space, with 

Y = C denoting the number of unique labels. Let Θ be the parameter space of the learning 

model, and f ⋅ ; θ  be the post-activation, prediction output of model θ ∼ Θ. The objective 

for UDA is to optimize the learning model performance on the target domain:

θ* = arg min
θ ∈ Θ

Ex, y ∼ Pt
xy L f x; θ , y . (1)

In practice, the learning model is derived based on accessible samples from both domains, 

i.e. θ Φ Ds, Dt , where Φ is the learning procedure. Without loss of generality, in this 

work, we focus on single domain adaptation, and our learning framework can be readily 

extended to address multi-domain adaptation problems.

UDA with Source Domain Corruption tackles domain adaptation from a corrupted source 

domain. One can consider that there is a one-to-one mapping between the clean source 
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domain Ps
xy and the corrupted source domain Ps

xy
. The input feature xs

i can be disrupted with 

probability pe:

pe: = Exsi , xsi ∼ Ps X , Ps X I xs
i ≠ xs

i .

Accordingly, labels of noisy samples are transformed based on an unknown transition 

probability matrix T ∈ ℝC × C, where C is the cardinality of label types. Each entry T i, j  in 

T denotes the probability that a label i ∈ C  is flipped to j ∈ C  after data corruption:

T i, j = Eysi , ysi ∼ Ps Y , Ys X I ys = j ∣ ys = i .

Denote Ds = xs
i, ys

i
i = 1

Ns  the noisy samples from Ps
xy

, the model learned under corrupted 

source domain is hence derived by noisy source domain samples instead: θ Φ Ds, Dt . 

Such data corruption can be unconsciously introduced during data collection by human 

mistakes or sensor malfunction, or maliciously triggered via malicious attacks. It is a 

challenging yet practical problem setting, potentially undermining most existing UDA 

approaches that do not consider the risk of noisy source domains (as illustrated in Figure 1).

IV. METHODOLOGY

A. Preliminaries of Median of Means

Given a model θ, there exists a gap between the empirical risk 

Ê θ : = 1
D ∑x ∼ D L f x; θ , y , and the true risk E θ : = Ex, y ∼ Pxy L f x; θ , y , which can be 

exacerbated when the data are heavily tailed or contain contaminated samples. Therefore, 

models that are learned to soley minimize Ê θ  can be sensitive to outliers. Median of Means 

estimators alleviate such issue by finding a more proper approximation of the true risk, 

compared with an empirical risk minimizer (ERM). Formally, let xi
i = 1
N  be N i.i.d. samples 

from an unknown distribution P. Let the MoM estimator associated with a parameter 

δ ∈ e1 − N /2, 1 , then one can evenly separate xi
i = 1
N  into K blocks, where K = ln δ−1 . The 

MoM estimator μMoM δ  is then defined as the median of the K arithmetic mean of each block 

Xk:

μMoM δ = median 1
Zk xi ∼ Xk

xi;
k = 1

K

.

The MoM estimator can probably attain subgaussian properties under mild assumptions on 

the variance of input features. Particularly, ∀N ≥ 4, one can derive that [24]:

ℙ ∣ μMoM δ − EP x ∣ > C 1 + ln δ−1

N ≤ δ .
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Unlike the ERM estimator μ̂ = 1
N ∑i = 1

N xi, MoM estimator is robust to data with outliers or 

heavy-tailed inputs. Inspired by MoM, we aim to approximate and minimize the centroid of 

the excessive risks by ensemble learning, which is resemblant to the median of means when 

we treat xi as a sample-wise loss value.

B. Robust UDA via Ensemble Learning

We now elaborate on our learning paradigm. We first randomly split the source domain 

data Ds: = xs
i, ys

i
i = 1

Ns  into K even blocks Ds
k

k = 1

K
, and apply the same random split for the 

unlabelded target domain data: Dt
k

k = 1
K . Next, we learn K separate models with parameters 

θ k = 1
K , while each optimizing towards a domain-adaptation objective using one pair of the 

〈source, target〉 domain data block, respectively, to minimize the empirical risk:

min
θk ∼ Θ k = 1

K

1
K k = 1

K
Exs, ys ∼ Ds

k, xt ∼ DtkJDA xs, ys, xt, θk , (2)

in which JDA xs, ys, xt; θ  is the domain-adaptation risk function. One highlight of our work 

is that, we do not constrain the specific form of JDA, hence a variety of UDA approaches 

proposed by prior arts can be flexibly integrated into our learning framework, by applying 

different forms of JDA as in need. In practice, JDA is usually derived by adversarial learning 

to attain a saddle-point solution that captures domain-invariant latent representations [25], 

[10]. Without the loss of generality, we present one form of JDA as below, although any other 

legitimate objective forms are also applicable: JDA xs, ys, xt; θ : =

max
D:X 0,1

log 1 − D g xs; θ + log D g xt; θ
A

+L f xs; θ , ys

(B)
,

(3)

in which D is a discriminator model inspired by adversarial generative training [26], and 

g ⋅ ; θ  is the latent feature map of model θ. The term (A) in Equation 3 encourages learning 

a domain-invariant feature representation, while the term (B) in Equation 3 reinforces the 

predictive power of the model using labeled supervision from the source domain.

Once the K models have been learned, the centroid prediction of arbitrary sample x can be 

derived by their ensemble voting:

y‾ = ensemble x; θk k = 1
K

= arg max
y ∼ Y k = 1

K
I arg max

c ∼ Y
f x; θk c = y ,

(4)

where I is an indicator function; f x; θk  is the posterior distribution output of model θk, and 

f x; θk c indicates the predictive probability of input feature belonging to class c. Therefore, y‾
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of an input feature x is the most voted label by the K models, which alleviates the influences 

of potentially contaminated models induced by data corruption.

C. Hypothesis Adaptation by Information Maximization

Up to now, one can derive a conceptual robust model by using the ensemble results from 

multiple models. To reinforce the performance of models before the final ensemble, we 

can adapt their hypothesis to the target domain by further leveraging the unlabeled target 

domain samples. More concretely, we refine each learned model θt by maximizing the 

mutual information between its latent feature representations and its posterior distribution. 

using the following information maximization objective:

min
θk

JIM Dt; θk

: = Ext ∼ Dt H f x; θk

A
− H softmax Ex ∼ Dt f xt; θk

B
,

(5)

where H p  is the entropy for input p ∼ △Y.

This refinement objective aligns with a common perception that, an ideal model shall 

be confident in its sample-wise predictions (minimize term A), and be diversified on 

domain-wise predictions (maximize term B). A resemblant strategy has been applied by 

prior work to address source-free DA [27]. In our setting, optimizing toward this objective 

shows significant benefits in weakening the impacts of source data corruption, which can 

adaptively tune the potentially contaminated model to fit in the target domain hypothesis.

Moreover, when refining a model θk using target domain samples, we can obtain the pseudo 

label ŷt = arg max
c C

f xt; θ c for each sample xt, as well as the class-wise centroid representation 

gk:

∀k ∈ C , g‾k = Ext ∼ Dt, ŷt = k g xt; θk . (6)

where g xt; θk  is the latent feature representation of xt, i.e. the penultimate layer output of 

model θ. We find it beneficial to correct the pseudo labels of xt by finding the nearest 

centroid: y‾t: = arg min
k ∈ C

cos g xt; θk , g‾k , then use the corrected pseudo labels y‾t to adjust the 

model. More concretly, this augmented objective JPL is derived as follows:

min
θk

JPL: = Ext ∼ Dt, y‾t −log f xt; θk y‾t . (7)

Based on the above building blocks, we now summarize our robust domain adaptation 

approach in Algorithm 1, in which K models are independently learned using separated 

training blocks, then refined to adapt their model hypothesis into the target domain by 

optimizing Equation 5 and Equation 7, where α and β are the constant w.r.t the gradient of 

Equation 5 and Equation 7, respectively. Note that for each learning batch i, we iteratively 
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adjust the centroid g‾k using the updated model. Eventually, their ensemble voting is used as 

the final prediction for the target domain.

V. EVALUATION

In this section, we conduct extensive experiments1 on multiple benchmark datasets to 

investigate the following question: whether our approach is effective for unsupervised 

domain adaptation, given a corrupted source domain data?

A. Experiment Setup

Dataset: We conducted experiments using the following datasets: 1) Digit datasets: the 

UDA tasks from MNIST [28] to USPS [29] M U , and from USPS to MNIST U M , 

respectively. 2) Image datasets: the UDA task from CIFAR 10 [30] to STL [31] with the 

non-overlapping class of these two detests removed. Hence, these two domains are redefined 

as 9-class classification tasks. We also downscale the original image dimension of STL to 

the image dimension of CIFAR10.

Algorithm 1

Robust Unsupervised Domain Adaptation

1: Inputs: labeled source domain dataset Ds; unlabeled target domain dataset Dt; constant K, DA risk function 

JDA:X × X × Y ℝ+
; K models θk k = 1

K ∼ Θ training steps E1, adaptation steps E2; constant α, 

β > 0.

2:
Randomly split Ds, Dt into K blocks of pairs: Ds

k, Dt
k

k = 1
K , s . t . ∀k, Ds

k ≤ Ds
K , Dt

k ≤ Dt
K .

3: fork ∼ [K] in parallel do

4:  for1 ≤ i ≤ E1do

5:   θk θk − η ∗ ∇θkEDsk, Dtk JDA xs, ys, xt .

6:  end for

7: end for

8: fork ∼ [K] in parallel do

9:  for1 ≤ i ≤ E2do

10:   θk θk − η α∇θtJIM Dt; θk + βJPL Dt; θk .

11:  end for

12: end for

13: Return ensemble θk k = 1
K

.

Compared Approaches: We compare our method against the following approaches: 1) 

DANN is a representative UDA method based on generative-adversarial learning [25]. 2) 

CDAN is short for conditional adversarial domain adaptation, which conditions the model 

posterior on the discriminative information from the classifier [32].

1The code is available at https://github.com/illidanlab/RobustUDA
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Implementation: We choose backdoor attacks as our corruption method because it is a 

more challenging attack than feature noise or label noise attacks that existing robust DA 

methods managed to solve. We implement two kinds of backdoor attacks:

1. BadNet Attack : BadNet [33] is one of the most common backdoor attacks. 

According to a set poison ratio, we add a 5 × 5 trigger to the upper right corner 

of each poisoned sample from the source domain. These poisoned samples are 

also assigned with attacker-specified target labels. Then these poisoned source 

samples are fed into DNNs along with the remaining clean source samples and a 

few unlabeled target samples for training. The network is evaluated both on the 

clean target samples and poisoned target samples which are corrupted the same 

way as source samples.

2. Clean Label Backdoor Attack (CLBD): Compared with BadNet, CLBD [14] 

does not change the label of poison samples, but adds a learned adversarial 

perturbation to each base image. We craft the poison samples on a pre-trained 

Resnet-18 model using the CIFAR10 dataset, then modify them with a trigger. 

Note that the poison ratio for CLBD represents the fraction of examples poisoned 

from a single class, instead of the entire source training samples.

For the digit tasks, we utilize the LeNet-5 [34] network, while for image tasks, we adopt the 

Resnet-18 network.

Evaluations are performed w.r.t. the following criteria:

1) Target clean accuracy (Clean acc) refers to the accuracy evaluated on the clean target 

dataset. 2) Target poison accuracy (Poison acc) refers to the accuracy evaluated on the 

poisoned target data with clean labels. 3) Attack success rate (Success rate) refers to the 

accuracy evaluated on the poisoned target data with poisoned labels. This criterion can help 

us find out whether hidden backdoors are activated by attacker-specified trigger patterns.

B. Results and Discussions

For the digits tasks M U , we apply BadNet attacks and vary the poison ratio from 0.01 to 

0.03. For image adaptations between CIFAR10 and STL, we fix the poison ratio to be 0.02 

for BadNet attacks and 0.5 for CLBD attacks.

Effects of MoM on defending poison data attacks: For digit adaptation tasks, we 

evaluate the accuracy and attack success rates w.r.t. different poison ratios for two different 

base DA approaches: DANN and CDAN, respectively. As shown in Table I, our proposed 

MoM method is consistently robust given different base DA algorithms. When the poison 

ratio is 0, there are no poisoning attacks on source data, hence the poison acc and success 

rate for poison ratio = 0 is evaluated on poisoned testing samples, with a model trained 

on clean samples. We use this result as a reference for the following experiments. The 

performance of MoM for image task under BadNet and CLBD attacks is shown in Figure 3. 

Block number = 1 refers to training without applying MoM, which we use as the baselines 

for our proposed algorithm. We found that by applying MoM, we significantly bring down 
the attack success rate and improve the target poison test accuracy while maintaining 
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the target clean sample accuracy. The results for both tasks can be further improved by 

adaptation with IM or PL which will be covered later.

Effects of different block numbers for MoM: We also investigate how the number 

of blocks would affect the performance of our approach. We observe that increasing the 
number of blocks within a certain range is beneficial for improving the performance. The 

best block number is related to the poison ratio and can be task dependent. For instance, 

adaptation tasks between CIFAR10 and STL need more blocks to achieve a low attack 

success rate, compared with digits adaptations. Meanwhile, we show that adaptation with 

IM or PL (Section IV-C) is more beneficial for enhancing the robustness of our approach, 

instead of keeping increasing the block number.

Effects of defending poison data attack using adaptation: To further improve the 

results, we refine our model with adaptation method IM and PL (section IV-C). IM and 

PL are verified to be effective to not only further decrease the attack success rate but also 

increase the target poison accuracy. To the best of our knowledge, our proposed method 

is the most robust DA method given corrupted source samples compared with existing 

methods. For the digits tasks, we evaluate our proposed MoM + adaptation algorithm 

with poison ratio=0.03 and block number=20, using two models: DANN and CDAN, 

respectively, as shown in Table II. For image task, the accuracy and attack success rates 

for BadNet attacks and CLBD attacks with the best block size 40 are shown in Table III. 

Both IM and PL can be used to further improve the results for defending BadNet and CLBD 
attacks while IM shows the best results.

VI. CONCLUSION

In this work, we tackled the problem of unsupervised domain adaptation under corrupted 

source domain samples. Inspired by the Median of Means estimators, we proposed 

a principled and robust ensemble learning algorithm powered by hypothesis transfer 

via information maximization, which can defend corrupted training samples with high 

performance on the target domain. Extensive empirical studies showed that our UDA 

approach is robust against agnostic data corruption, which can serve as a general framework 

to improve the robustness of orthogonal UDA approaches. We leave more complex 

scenarios, such as corrupted multi-domain adaptation, to our future work.
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Fig. 1: 
Source domain data corruption may lead to failure in many existing domain adaptation 

approaches.
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Fig. 2: 
Process of robust domain adaptation learning.
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Fig. 3: 
Clean test accuracy, poison test accuracy and attack success rate for MOM w.r.t. different 

block number. Increasing the number of blocks within a certain range is beneficial for 

improving the performance.
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TABLE I:

Accuracy(%) and attack success rates(%) for MoM using under BadNet attacks.  indicates that a larger value 

is desirable, and vice versa. Bold numbers are best performers. Bnum indicates block number. By applying 

MoM, we can significantly bring down the attack success rate and also improve the target poison test accuracy, 

while maintaining the target clean sample accuracy.

DA Task Poison ratio Bnum Clean acc ↑ Poison acc ↑ Success rate ↓

DANN

M U

0 (clean) 1 88.89 11.26 9.62

0.01
1 88.79 8.57 92.33

10 86.25 12.21 8.77

0.02
1 89.34 8.77 97.06

15 83.86 11.61 28.65

0.03
1 88.44 8.62 95.17

20 82.76 11.21 35.87

U M

0 (clean) 1 95.54 9.56 9.89

0.01
1 95.38 10.02 94.89

10 85.00 10.24 12.88

0.02
1 93.30 10.21 97.82

10 83.22 10.50 18.09

0.03
1 95.02 10.10 99.12

20 75.31 10.57 18.87

CDAN

M U

0 (clean) 1 93.47 12.41 9.57

0.01
1 93.52 8.52 94.27

10 87.84 12.76 9.97

0.02
1 94.07 8.57 97.46

15 85.45 12.01 19.18

0.03
1 94.02 8.82 99.15

20 82.71 10.96 38.22

U M

0 (clean) 1 92.96 9.68 10.04

0.01
1 96.29 10.17 93.49

10 83.09 10.48 15.62

0.02
1 93.4 10.1 97.27

15 77.71 10.56 17.51

0.03
1 97.22 10.13 98.39

20 74.39 10.53 20.76
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TABLE II:

Accuracy(%) and attack success rates(%) for digit task. Our adaptation method is consistently robust given 

different DA algorithms. IM and PL are verified to be effective to not only further decrease attack success rate 

but also increase the target poison test accuracy.

DA model Task Clean acc ↑ Poison acc ↑ Success rate ↓ Adaptation

DANN

M U
82.76 11.21 35.87 /

80.67 11.71 19.03 IM

81.22 11.96 16.49 IM+PL

U M
75.31 10.57 18.87 /

78.95 10.62 10.11 IM

79.46 10.76 9.89 IM+PL

CDAN

M U
82.71 10.96 38.22 /

81.42 12.51 7.08 IM

81.81 12.16 10.66 IM+PL

U M
74.39 10.53 20.76 /

78.90 10.50 11.58 IM

80.67 10.56 10.60 IM+PL
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TABLE III:

Accuracy(%) and attack success rates(%) using base approach DANN for the task CIFAR10  STL under 

BadNet and CLBD attack. Our adaptation method is consistently robust given different kinds of tasks and 

corruptions.

Attack Clean acc ↑ Poison acc ↑ Success rate ↓ Adaptation

BadNet

62.00 55.76 19.28 /

62.00 56.76 16.64 IM

60.85 50.79 18.38 IM+PL

CLBD

63.98 48.97 25.96 /

61.99 50.38 23.45 IM

62.41 50.71 24.37 IM+PL
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